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Abstract
We give a brief review of the quantum Hall effect in higher dimensions and
its relation to fuzzy spaces. For a quantum Hall system, the lowest Landau
level dynamics is given by a one-dimensional matrix action whose large N
limit produces an effective action describing the gauge interactions of a higher
dimensional quantum Hall droplet. The bulk action is a Chern–Simons type
term whose anomaly is exactly cancelled by the boundary action given in terms
of a chiral, gauged Wess–Zumino–Witten theory suitably generalized to higher
dimensions. We argue that the gauge fields in the Chern–Simons action can
be understood as parametrizing the different ways in which the large N limit
of the matrix theory is taken. The possible relevance of these ideas to fuzzy
gravity is explained. Other applications are also briefly discussed.

PACS numbers: 02.40.Gh, 11.15.−q, 73.43.Cd

1. Introduction

It is well known that when the number of elementary quanta involved in any process is very
large, quantum dynamics can be approximated by classical dynamics; this is the celebrated
correspondence principle. The classical phase space takes over the role of the quantum Hilbert
space. Quantum observables, which are linear Hermitian operators on the Hilbert space, can be
approximated by functions on the classical phase space. Properties of functions on the phase
space can be obtained as limits of properties of operators on the Hilbert space. Keeping this idea
of correspondence in mind, the general structure of a quantum field theory, describing gauge
and matter fields, may be formulated as follows. We have an ambient spacetime differential
manifold M. Fields are functions (or sections of an appropriate bundle) on M. They are also
operators on the quantum Hilbert space of matter Hm, and obey quantum conditions such as
commutation rules, characterized by the deformation parameter h̄. At finite h̄, we have the
quantum field theory; as h̄ → 0, we can approximate the physics by a classical field theory.
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The general correspondence principle, however, suggests a further extension of this idea
and a new paradigm for physical theories. The spacetime manifold M itself may be viewed
as an approximate method of description, obtained as the limit of some discrete Hilbert space
Hs . Thus, instead of functions on M, physical fields are operators on Hs . They are also
operators on the Hilbert space Hm of the theory. A new deformation parameter θ , relevant to
Hs , may be introduced, so that, as θ → 0, we can approximate the theory in terms of functions
on a smooth manifold M. Thus, the usual quantum field theories are recovered in this limit.
(A further limit, h̄ → 0, would take us to the classical field theory.) In this formulation, fields
are operators on Hs ⊗ Hm, or we may view them as matrix-valued quantum operators, the
matrices being of dimension dim(Hs). Field theories can thus be regarded as limits of matrix
models.

The mathematical structure that is relevant here is that of fuzzy geometry or, more
generally, noncommutative geometry [1]. A fuzzy space is defined by a sequence of triples
(HN, MatN,�N), where MatN is the matrix algebra of (N × N)-matrices which act on the
N-dimensional Hilbert space HN and �N is a matrix version of the Laplace operator. The
matrices are taken to have an inner product given by, say, 〈A,B〉 = 1

N
Tr(A†B), for arbitrary

matrices A,B. In the large N limit, a matrix may be approximated by a function on some
smooth manifold M, the latter being a phase space corresponding to the Hilbert space HN . In
this case, the deformation parameter θ is a function of N, with θ → 0 as N → ∞. At finite
N, we have the noncommutative algebra MatN , but this tends to the commutative algebra of
functions on the smooth manifold M as N → ∞. The Laplacian �N is used to define the
metric and related geometrical properties of the manifold M. For example, information about
the dimension of M is contained in the rate of growth of the degeneracy of eigenvalues of �N .

Clearly, the idea of formulating field theories as matrix models on a fuzzy space is very
appealing for a number of reasons. The matrix formulation gives a discretization of the
field theory and therefore, at the very least, we get a regularization of the theory with a
finite number of modes. This is analogous to the lattice regularization, but, in general, it is
possible to preserve more symmetries in a fuzzification than in latticization [2]. Secondly,
and perhaps most importantly, space, or spacetime, is being viewed as an approximation to a
Hilbert space Hs . Thus, the dynamics of spacetime geometry, in other words, gravity, can be
naturally described as dynamics on the Hilbert space Hs . The fact that the number of modes
would be finite in a fuzzy formulation will ensure that we have a mathematically well-defined
formulation of gravity.

It is worth recalling at this stage that fuzzy geometry is part of the more general framework
of noncommutative geometry. Noncommutative geometry is a generalization of ordinary
geometry, based on the following result. The algebra of complex-valued square-integrable
functions on a manifold M, with pointwise multiplication as the algebraic operation, is a
commutative C∗-algebra. This C∗-algebra incorporates many of the geometrical properties of
the manifold M. Conversely, any commutative C∗-algebra can be represented by the algebra
of functions on an appropriate space M, with the geometrical properties of M being images of
corresponding algebraic properties of the C∗-algebra. This result allows a change of point of
view: we may take the algebra as the fundamental concept, the geometry being derived from
it. The generalization is then to consider a noncommutative C∗-algebra; it may be taken as
the analogue of an ‘algebra of functions’ on some noncommutative space. The mathematical
properties of this noncommutative space are then implicitly defined by the properties of the
algebra. This is the basic idea of noncommutative geometry [3–5].

More specifically, noncommutative geometry is given as a spectral triple (A,H,D), where
A is a noncommutative algebra with an involution, H is a Hilbert space on which we can realize
the algebra A as bounded operators and D is a special operator which will characterize the
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geometry. In terms of such a spectral triple, the analogue of differential calculus on a manifold
can be constructed. For the special case when H is the space of square-integrable spinor
functions on a manifold M (technically, sections of the irreducible spinor bundle), A is the
algebra of complex-valued smooth functions on M and D is the Dirac operator on M (for
a particular metric and the Levi-Civita spin connection), the differential calculus constructed
from the algebra is the standard differential calculus on M. Going back to matrices, it is clear
that the algebra of finite-dimensional matrices MatN can play the role of A and, hence, fuzzy
geometry is a special case of noncommutative geometry. (The idea of using noncommutative
geometry for gravity was suggested many years ago by Connes and others [3–6].)

While fuzzy spaces can be viewed as a regulator with real physics being eventually
recovered when N → ∞, the idea of fuzzy geometry goes further. One may regard the
true physics as given by the theory at finite, but large N, the smooth manifold limit being a
convenient simplification for calculations. After all, it is an elementary truism that, while
we formulate physical theories on continuous spaces, infinite-dimensional Hilbert spaces, etc,
we always deal with a finite set of measurements or even a finite number of possibilities for
measurements. Therefore, it is almost tautological that physical theories, at least for the case
of space being even dimensional, can be described by finite-dimensional matrix models.

Indeed, matrix models have recently appeared in a number of different contexts in physics.
It was observed many years ago that one could use matrix models as a regularization of
membrane theories [7]. By now this is well understood and matrices have become a standard
technique for analysis of branes of different dimensions. Matrix models’ descriptions of
M-theory (in a certain kinematic limit) have been proposed [4, 8]. Fuzzy spaces emerge
naturally as classical solutions of such models. Matrix models also appear, because they
contain brane-like configurations, in elaborations of the gauge–gravity duality [9]. Analyses
of gauge theories dimensionally reduced to matrix models have been useful in probing this
duality. Noncommutative spaces also appear in string theories in certain backgrounds with a
constant nonzero value for the 2-form gauge field [4, 5].

Fuzzy spaces are also closely related to the quantum Hall effect [10]. For the classic
Landau problem of a charged particle in a magnetic field, the corresponding energy spectrum
consists of equally spaced Landau levels; each Landau level is degenerate and the energy
gap separating consecutive levels is proportional to the magnetic field B. For strong magnetic
fields, the low-energy physics is confined to the states within one, say the lowest Landau level
(LLL). The observables relevant for low energies are Hermitian operators on this subspace of
the Hilbert space; they are given by the projection of the full operators to the lowest Landau
level. The operators representing coordinates, for example, when projected to the LLL
(or any other level), are no longer mutually commuting. The LLL thus becomes a model
of the noncommutative 2-plane. (The appearance of noncommutativity in the string context
mentioned above is similar, with the 2-form field playing the role of the magnetic field.)
Generalizing beyond the plane, for the Landau problem on a compact space of finite volume,
we get a finite number of states in the LLL, and the resulting subspace can be identified as
HN , one of the ingredients for a fuzzy space. Observables then become (N × N)-matrices
and there are natural choices for the Laplacian. More specifically, the LLL states for quantum
Hall effect on a space M give us a fuzzy version of M.

The main advantage of this point of view is that the quantum Hall system gives us a
model and a physical context to think about many issues related to fuzzy spaces. The lowest
Landau level gives us a realization of the fuzzy space; subspaces, specified by a projection
operator, will correspond to Hall droplets. The edge excitations of the Hall droplet describe
the dynamics of the embedding of a disc into the fuzzy space. The bulk dynamics of the Hall
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droplet is related to the dynamics of gauge fields corresponding to isometries of the fuzzy
space, and hence, gravity.

In the following, we will discuss such issues from both the matrix model–fuzzy space and
the quantum Hall points of view. Thus, all results can have two different interpretations. We
will start with the quantum Hall effect since this gives a familiar physical context.

2. Quantum Hall effect in higher dimensions

Quantum Hall effect in two dimensions is a very special physical phenomenon which has led
to an enormous amount of theoretical and experimental research [11]. The basic phenomenon
refers to the dynamics of charged fermions (electrons in a solid) in a plane with a constant
magnetic field orthogonal to it. At the single particle level, the energy eigenstates are grouped
into the Landau levels. For high values of the magnetic field at low temperatures, the separation
of levels is high compared to the available thermal excitation energy and the dynamics is
confined to the lowest Landau level. In a physical sample, there is also a potential V which
confines the fermions to within the sample. If we have K fermions, they are localized near the
minimum of V , but spread out over an area proportional to K due to the exclusion principle.
We get an incompressible droplet. Physically interesting issues are the bulk dynamics of the
droplet, which refers to its response to changes in the externally applied electromagnetic fields,
and the edge dynamics which describes the fluctuations of the edge of the droplet. The electric
current in the planar direction orthogonal to an applied in-plane electric field, the so-called
Hall current, is quantized, hinting at topological robustness in the underlying dynamics. As a
result, there are many interesting mathematical facets to the theory.

The quantum Hall effect was generalized to the four-dimensional sphere S4 by Zhang and
Hu [12]. Since then further generalizations and analyses in higher dimensions and different
geometries have been carried out by many authors [13–20]. The general framework is the
following. For any coset manifold of the G/H type, where G is a Lie group and H a compact
subgroup (of dimension �1), the spin connection gives the analogue of a constant background
field. Thus, it is possible to consider QHE on such spaces taking the gauge field to be
proportional to the spin connection. In two dimensions, one can consider S2 = SU(2)/U(1)

which admits a constant U(1) background field and leads to the usual QHE on a 2-sphere.
For S4 = SO(5)/SO(4), the isotropy group is H = SO(4) ∼ SO(3) × SO(3) giving the
possibility of self-dual and anti-self-dual fields, the instantons. This was the case considered
by Zhang and Hu [12]. For CPk = SU(k + 1)/U(k), one can get constant background fields
which are either Abelian (U(1)) or non-Abelian (U(k)). Other interesting cases which have
been studied include S3 = SU(2) × SU(2)/SU(2) [17], the 8-sphere S8 [18] and hyperbolic
spaces based on noncompact groups [19].

The quintessential example for us is CPk , since it has all the characteristics we need and
most of the other spaces which have been studied are special cases of this. The case of S4

can be recovered from QHE on CP3 since CP3 is an S2-bundle over S4. As a result, CP3

with a U(1) field leads to S4 with a self-dual SU(2) field as the background gauge field [14].
Likewise, since CP7 is a CP3-bundle over S8, QHE on S8 can be obtained from CP7 [18]. The
case of S3 can be related to CP1 × CP1 = S2 × S2 via the angle-axis embedding of S3/Z2 in
S2 × S2 [17]. So, in short, we can use CPk to formulate our calculations. Most of the results,
of course, will be generic.

3. Quantum Hall effect on CPk

In this section, we shall consider the states in the lowest Landau level for the space
CPk = SU(k + 1)/U(k) [13, 14]; this space will be adequate for our considerations.
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The symmetries of CPk form the group SU(k + 1), with U(k) as the local isotropy group.
The Riemannian curvature of CPk takes values in the Lie algebra of U(k), and because this is
a homogeneous space, the curvature is constant in the basis of the frame fields. We can thus
choose values of the background gauge field to be proportional to the curvature; this would
give us a generalization of the ‘constant magnetic field’. The Landau problem is defined by
this choice of magnetic field and one can then solve for the Landau levels.

The construction of the wavefunctions for the Landau levels can be done as follows.
Let g denote a general element of SU(k + 1) in the fundamental representation, i.e., it is a
(k + 1)× (k + 1) matrix. The representative of g in a representation J is the Wigner D-function
corresponding to that representation. If ĝ denotes a general operator version of g, then we
may write the D-function as

D(J )
L,R(g) = 〈J, l|ĝ|J, r〉, (1)

where l, r label the states within the representation J . Functions on SU(k + 1) can be expanded
in a basis of the D-functions; functions on CPk = SU(k + 1)/U(k) are given by functions on
SU(k + 1) which are U(k)-invariant.

We define the left and right translation operators on g by

LAg = tAg, RAg = gtA. (2)

Here, tA, A = 1, 2, . . . , k2 + 2k, are a set of Hermitian matrices which form a basis of the Lie
algebra of SU(k + 1) in the fundamental representation. These are taken to obey

[tA, tB ] = ifABCtC, Tr(tAtB) = 1
2δAB. (3)

fABC are the structure constants of SU(k + 1) in this basis. The right translation operators
can be split into the subgroup and coset generators as follows. Rk2+2k will denote the U(1)

generator in U(k) ⊂ SU(k + 1), Ra, a = 1, 2, . . . , k2 − 1, will denote SU(k) generators. The
coset components which are in the complement of U(k) in the Lie algebra SU(k + 1) will
be denoted by Rα, α = 1, 2, . . . , 2k. The coset generators can be further separated into the
raising and lowering type R±I = R2I−1 ± iR2I , I = 1, . . . , k. (A similar splitting can be
made for the left translations, but they will not be needed for what follows.)

The translation operators RA,LA can be realized as differential operators with respect
to the parameters of g. The coset operators Rα correspond to covariant derivatives while
the SU(k + 1) operators LA correspond to magnetic translations. In particular, the covariant
derivatives on CPk can be taken to be D±I = iR±I /R, where R is a scale factor giving
the radius of CPk . Since [R±I , R±J ] ∈ U(k), we get [R±I , R±J ]f = 0 for functions f

on CPk since they are U(k)-invariant. The commutator of the covariant derivatives on the
wavefunctions of charged particles must be proportional to the field strength. Thus, they will
not be true functions in CPk but rather sections of a bundle. We consider a general background
where there is a constant U(1) field proportional to the U(1) component of the curvature and a
constant non-Abelian SU(k) field proportional to the SU(k) component of the curvature. The
particles will be taken to have a unit Abelian charge and to transform as a representation J ′ of
SU(k) for the non-Abelian part. The statement about background fields can then be encoded
in the commutation rules if we require the wavefunctions to obey

Ra�m;a′ = �m;b′(Ta)b′a′ ,

Rk2+2k�m;a′ = − nk√
2k(k + 1)

�m;a′ .
(4)

The indices a′, b′ = 1, . . . , N ′ label the states within the SU(k) representation J ′. The
matrices Ta are the SU(k) generators in the representation J ′. For a unitary realization of the
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right translations, Ta should be the generators of a unitary representation of SU(k) ∈ SU(k + 1)

and, for the U(1) part, n has to be an integer, so that the U(1) action is part of a unitary
representation of SU(k + 1). These are Dirac-type quantization conditions. In the special case
when there is no SU(k) field, these simplify as

Ra�m = 0, Rk2+2k�m = − nk√
2k(k + 1)

�m. (5)

The wavefunctions obeying these conditions will be proportional to D(J )
L,R , where the state

|J, r〉 is chosen to have the eigenvalue −nk/
√

2k(k + 1) for the U(1) generator Tk2+2k and to
transform as the J ′ representation of SU(k) ∈ SU(k + 1). The representation J of SU(k + 1)

must be so chosen that it contains such an SU(k) representation, with the assigned U(1)

charge.
The Laplacian for the space is given by −∇2 = R+IR−I +R−IR+I = 2R+IR−I + constant.

The Hamiltonian for the Landau problem will be proportional to this for the nonrelativistic
case and proportional to

√−∇2 + m2 for the relativistic case; in any case, it is an increasing
function of R+IR−I . We see that the minimum of the Hamiltonian, and hence the lowest
Landau level, is given by wavefunctions obeying

R−I�m;a′ = 0. (6)

This means that, for the lowest Landau level, in addition to the conditions (4), |J, r〉 must be
a lowest weight state with T−I |J, r〉 = 0; we will denote these states as |a′,−n〉. Once the
representation J ′ is specified, one can identify representations J of SU(k + 1) which contain
such a state. For example, if there is no SU(k) field, the symmetric rank n representation of
SU(k + 1) will contain the lowest weight state |−n〉, which is an SU(k) singlet. The properly
normalized wavefunctions are given by

�m;a′(g) =
√

N〈J, l|ĝ|a′,−n〉 ≡
√

NDm;a′(g), (7)

where N is the dimension of the representation J of SU(k + 1). These are normalized by virtue
of the orthogonality theorem∫

dµ(g)D∗
m;a′(g)Dk;b′(g) = δmkδa′b′

N
. (8)

It is instructive to relate this group-theoretic analysis to the standard discussion of CPk

in terms of homogeneous and local coordinates. We begin by recalling that CPk is a
2k-dimensional manifold parametrized by k + 1 complex coordinates va , such that v̄ava = 1,
with the identification va ∼ eiθ va . One can further introduce local complex coordinates
zI , I = 1, . . . , k, by writing

vI = zI√
1 + z̄ · z

, vk+1 = 1√
1 + z̄ · z

. (9)

We can now use a group element g in the fundamental representation of SU(k + 1)

to parametrize CPk , by making the identification g ∼ gh, where h ∈ U(k). We can use
the freedom of h transformations to write g as a function of the real coset coordinates
xi, i = 1, . . . , 2k. The relation between the complex coordinates zI , z̄I in (9) and xi is
the usual one, zI = x2I−1 + ix2I , I = 1, . . . , k. The homogeneous coordinates are related to
the group element by gI,k+1 = vI , gk+1,k+1 = vk+1.

For the variation of g, we can write

g−1 dg = (−iEk2+2k
i tk2+2k − iEa

i ta − iEα
i tα

)
dxi. (10)

Eα
i are the frame fields in terms of which the Cartan–Killing metric on CPk is given by

ds2 = gij dxi dxj = Eα
i Eα

j dxi dxj . (11)
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The Kähler 2-form on CPk is likewise written as

ωK = −i

√
2k

k + 1
tr(tk2+2kg

−1 dg g−1 dg)

= −1

4

√
2k

k + 1
f (k2+2k)αβEα

i E
β

j dxi ∧ dxj ≡ 1

2
(ωK)ij dxi ∧ dxj . (12)

The fields Ek2+2k
i and Ea

i are related to the U(1) and SU(k) background gauge fields on CPk .
In particular, the U(1) field a is given by

a = in

√
2k

k + 1
tr(tk2+2kg

−1 dg) = n

2

√
2k

k + 1
Ek2+2k. (13)

We can similarly define an SU(k) background field Āa
i . Its normalization is chosen so that

Āa ≡ Ea = 2i tr(tag−1 dg). (14)

Note that Āa in (14) does not depend on n, while the Abelian field a in (13) is proportional to
n. The corresponding U(1) and SU(k) background field strengths are

∂iaj − ∂jai = n(ωK)ij = −n

2

√
2k

k + 1
f (k2+2k)αβEα

i E
β

j ,

F̄ a
ij = ∂iĀ

a
j − ∂j Ā

a
i + f abcĀb

i Ā
c
j = −f aαβEα

i E
β

j .

(15)

We see from (15) that in the appropriate frame basis the background field strengths are constant,
proportional to the U(k) structure constants. It is in this sense that the field strengths in (15)
correspond to uniform magnetic fields appropriate in defining QHE. The Maurer–Cartan
equations

dEα − (
f aαβEa + f (k2+2k)αβEk2+2k

)
Eβ = 0 (16)

show that the spin connections are given by −f aαβEa and −f (k2+2k)αβEk2+2k; the field
strengths (15) are thus proportional to the Riemann curvature of CPk .

The U(1) background magnetic field (which leads to the Landau states) can be written in
terms of the homogeneous coordinates as a = −inv̄ · dv with the field strength

da = −in dv̄ · dv = nωK. (17)

We can also write n = 2BR2, in terms of the radius R of CPk , identifying B as the local value
of the constant U(1) magnetic field. (The case of charged fermions on CP1 = S2 with U(1)

background field, corresponding to k = 1, was studied by Haldane several years ago [21]. In
this case, the background gauge field a is that of a monopole of charge n placed at the origin
of S2.)

If there is only the U(1) field, the representations of SU(k + 1) which are relevant for
the lowest Landau level are totally symmetric and are of rank n. The wavefunctions are then
explicitly given in local coordinates as

�m(�x) =
√

N

[
n!

i1!i2! · · · ik!(n − s)!

] 1
2 z

i1
1 z

i2
2 · · · zik

k

(1 + z̄ · z)n/2
, m = 1, . . . , N,

s = i1 + i2 + · · · + ik, 0 � ii � n, 0 � s � n.

(18)

These are the coherent states for CPk . The number of states in the lowest Landau level is
given by the dimension of the symmetric rank n representation as

N = dim J = (n + k)!

n!k!
. (19)
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Note that, for large n, this gives N → nk/k!. When there is a non-Abelian background as well,
the dimension N of the SU(k + 1) representation J depends on the particular J ′ representation
chosen. While the full formula depends on the details of the representations, for large n we
have

N = dim J → dim J ′ n
k

k!
= N ′ n

k

k!
. (20)

4. Matrix formulation of quantum Hall (phase space) dynamics

We are now in a position to present a matrix formulation of the dynamics of non-interacting
fermions in the lowest Landau level, with and without external gauge interactions. Our analysis
in this section will be quite general, not necessarily restricted to CPk .

We consider K fermions which occupy K states out of the N available states in the LLL.
The confining potential V̂ lifts the degeneracy of the LLL states and the fermions are localized
around the minimum of V̂ forming a droplet. Because of the exclusion principle and the
conservation of the number of fermions, the excitations are deformations of the droplet which
preserve the total volume of occupied states (volume of phase space).

The droplet is mathematically characterized by a diagonal density matrix ρ̂0 which is
equal to 1 for occupied states and zero for unoccupied states. Further, ρ̂0 may be taken to
be the density matrix for the many-body ground state. The most general fluctuations which
preserve the LLL condition and the number of occupied states are unitary transformations
of ρ̂0, namely ρ̂0 → ρ̂ = Û ρ̂0Û

†, where Û is an (N × N) unitary matrix representing the
dynamical modes. One can write an action for these modes as

S0 =
∫

dt Tr[iρ̂0Û
†∂t Û − ρ̂0Û

†V̂ Û ], (21)

where V̂ is the confining potential. (The Hamiltonian is V̂ up to an additive constant.) The
unitary matrix Û can be thought of as a collective variable describing all the possible excitations
within the LLL. The equation of motion resulting from (21) is the expected quantum Liouville
equation for the density matrix ρ̂,

i
∂ρ̂

∂t
= [V̂ , ρ̂]. (22)

The action S0 can also be written as [14]

S0 = N

N ′

∫
dµ dt tr[i(ρ0 ∗ U † ∗ ∂tU) − (ρ0 ∗ U † ∗ V ∗ U)], (23)

where dµ is the volume measure of the space where QHE has been defined and ρ0, U, V are
the symbols of the corresponding matrices on this space. (The hatted expressions correspond
to matrices and unhatted ones to the corresponding symbols, which are fields on the space
where QHE is defined.) Equation (23) is written for the case of non-Abelian fermions coupled
to a background gauge field in some representation J ′ of dimension N ′; the corresponding
symbols are (N ′ × N ′) matrix valued functions. We will use ‘Tr’ to indicate the trace
over the N-dimensional LLL Hilbert space while ‘tr’ indicates trace over the N ′-dimensional
representation J ′. In the case of Abelian fermions, N ′ = 1 and tr is absent. (The large N limit
we are considering will keep N ′ finite as N → ∞.)

The general definitions of the symbol and the star product are as follows. If
�m(�x),m = 1, . . . , N , represent the correctly normalized LLL wavefunctions, then the
symbol corresponding to an (N × N)-matrix Ô, with matrix elements Oml , is

O(�x, t) = 1

N

∑
m,l

�m(�x)Oml(t)�
∗
l (�x). (24)
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The star product is defined by the condition that the symbol for the product of two
matrices is given as the star product of the symbols for the individual matrices, i.e., by
(Ô1Ô2)symbol = O1(�x, t) ∗ O2(�x, t).

Note that the dynamics of the underlying fermion problem is described in terms of a
one-dimensional matrix action (21), which can also be written as a noncommutative field
theory action, as in (23). The matrices and the action in (21) do not depend on the particular
space and its dimensionality or the Abelian or non-Abelian nature of the underlying fermionic
system. This information is encoded in equation (23) in the definition of the symbol, the star
product and the measure.

This matrix formulation can be extended to include external gauge fields which are
in addition to the uniform background magnetic field which defines the Landau problem
[22]. These additional fields will be often referred to as the gauge field fluctuations. Gauge
interactions should be described by a matrix action S which is invariant under time-dependent
U(N) rotations, Û → ĥÛ , where ĥ = exp(−iλ̂) for some Hermitian matrix λ̂. The action
will be the gauged version of S0, with ∂t replaced by the covariant derivative D̂t = ∂t + iÂ,
where Â is a matrix gauge potential. Thus,

S =
∫

dt Tr[iρ̂0Û
†(∂t + iÂ)Û − ρ̂0Û

†V̂ Û ]. (25)

Invariance of this action under infinitesimal time-dependent U(N) rotations δÛ = −iλ̂Û

implies the following transformation for the gauge potential Â:

δÂ = ∂t λ̂ − i[λ̂, V̂ + Â]. (26)

The action (25) can be written in terms of the corresponding symbols as

S = N

N ′

∫
dt dµ tr[ρ0 ∗ (iU † ∗ ∂tU − U † ∗ V ∗ U − U † ∗ A ∗ U)]. (27)

The action (27) is now invariant under the infinitesimal transformations

δU = −iλ ∗ U,

δA = ∂tλ − i(λ ∗ (V + A) − (V + A) ∗ λ).
(28)

We shall refer to this as the WN -gauge transformation, in analogy to the W∞ transformation
appearing in the case of the planar two-dimensional QHE [23, 24].

The key physical question is how the field A is related to the gauge fields Aµ to which
the fermions couple in the usual way. Once this is known, the action (27) can be expressed in
terms of the usual gauge fields. For the gauge interactions of the original fermion system, we
have invariance under the usual gauge transformation

δAµ = ∂µ� + i[Āµ + Aµ,�], δĀµ = 0. (29)

Here � is the infinitesimal gauge parameter and Āµ is the non-Abelian uniform background
field. What we need is an expression for A in terms of Aµ such that when the gauge fields Aµ

are transformed as in (29), the field A undergoes the transformation (28). In other words, the
transformation (28) is induced by the transformation (29). This is the basic principle which
can be used to determine A as a function of Aµ, up to gauge-invariant terms. The bosonized
action of the LLL fermionic system in the presence of gauge interactions then follows in
a straightforward way. Since A is the time component of a noncommutative gauge field,
the relation between A and the commutative gauge fields Aµ is essentially a Seiberg–Witten
transformation [27, 28].

It is quite clear that the possible excitations of the LLL fermionic system are particle–hole
excitations, which can, in principle, be described in terms of bosonic degrees of freedom.



12744 D Karabali and V P Nair

The noncommutative field theories given by the actions S0 in (23) and S in (27) are the exact
bosonic actions describing the dynamics of the non-interacting LLL fermions without or with
gauge interactions. Thus, the matrix theory provides a very general way to construct the
bosonic action for a fermionic system by viewing it in phase space as a Landau problem with
the symplectic structure being the magnetic field. Some of these ideas have already been used
in the context of phase space bosonization for one-dimensional nonrelativistic fermions [24]
and for the effective droplet dynamics in the planar quantum Hall effect [25, 26].

We shall now demonstrate that in the limit where N → ∞ and the number of fermions
is large, the action S0 reduces, for arbitrary even dimensions, to a boundary action describing
the edge excitations (Abelian and non-Abelian) of the QHE droplet [14]. In the presence
of fluctuating gauge fields, there is an additional bulk action, given in terms of a Chern–
Simons term, whose anomaly gets cancelled by the boundary contribution given in terms of a
generalized chiral, gauged Wess–Zumino–Witten (WZW) action [22].

5. Star product for CPk with U (k) background gauge field

The large N simplifications are carried out using the symbols and star products. Let X̂ be a
general (N ×N)-matrix, with matrix elements Xml , acting on the N-dimensional Hilbert space
generated by the basis (7). The symbol corresponding to X̂ is defined by

Xa′b′(�x, t) = 1

N

∑
ml

�m;a′(�x)Xml(t)�
∗
l;b′(�x)

=
∑
ml

Dm;a′(g)XmlD∗
l;b′(g) = 〈b′,−n|g†XT g|a′; −n〉. (30)

In the non-Abelian case, the symbol is a (N ′×N ′) matrix valued function, while in the Abelian
case where J ′ is the singlet representation, the symbol is just a function on CPk . With this
definition,

Tr X̂ = N

N ′
∑
a′

∫
dµ(g)Xa′a′(g). (31)

The symbol corresponding to the product of two matrices X̂ and Ŷ is given by the star product
of the symbols for X̂ and Ŷ , i.e.,

(X̂Ŷ )a′b′ = Xa′c′ ∗ Yc′b′ =
∑
mrl

Dm;a′(g)XmrYrlD∗
l;b′(g)

= 〈b′,−n|g†Y T XT g|a′,−n〉 = 〈b′,−n|g†Y T 1XT g|a′,−n〉. (32)

In order to evaluate the star product, we need to re-express the unit matrix 1 in (32), where
1 = ∑

m |m〉〈m|, and |m〉 are all the states in the J representation, in terms of the lowest
weight states |a′,−n〉. In the case of a U(1) background field, the star product, following this
method, was derived in [14]. We found

X ∗ Y =
∑

s

(−1)s
[
(n − s)!

n!s!

] n∑
∑

ik=s

s!

i1!i2! · · · ik!

(
R

i1
−1 · · ·Rik

−kX
)(

R
i1
+1 · · · Rik

+kY
)
. (33)

Expression (33) can be thought of as a series expansion in 1/n. Similar expressions for the
star product of functions were derived in the context of noncommutative CPk [29].

In the case of the U(k) background field, the calculation of the star product to arbitrary
order in 1/n is very involved. The calculation to order 1/n was done in [14] and extended to
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order 1/n2 in [22]. The result is

X ∗ Y = XY − 1

n
R−IXR+I Y +

i

n2
R−J Xf aĪJ (Ta)

T R+I Y

+
1

2n2
R−IR−J XR+IR+J Y + O(1/n3). (34)

The right translation operators Rα can be expressed as differential operators using (2)
and (10),

Rαg = i(E−1)iα
(
∂ig + igEk2+2k

i Tk2+2k + igEa
i Ta

) ≡ i(E−1)iαDig,

Rαg† = i(E−1)iα
(
∂ig

† − iEk2+2k
i Tk2+2kg

† − iEa
i Tag

†) ≡ i(E−1)iαDig
†,

(35)

where Ts are the U(k) generators in the particular representation g belongs to. Using (35) and
the symbol definition (30), we find that the action of Rα on a symbol is

RαXa′b′ = i(E−1)iα(DiX)a′b′ ,

DiX = ∂iX + i[Āi, X], Āi = Āa
i (Ta)

T = Ea
i (Ta)

T ,
(36)

where Ā is the SU(k) background gauge field in the J ′ representation. Note that the U(1)

part of the gauge field does not contribute in (36).
Combining expressions (34) and (36), we can rewrite the star product in terms of covariant

derivatives and real coordinates (instead of complex) as

X ∗ Y = XY +
1

n
P ijDiXDjY − i

n2
P ilP kjDiXF̄ lkDjY

+
1

2n2
P ikP jlDiDjXDkDlY + O(1/n3), (37)

where F̄ lk = F̄ a
lk(Ta)

T and P ij = gij + i
2

(
ω−1

K

)ij
. Di is the Levi-Civita covariant derivative

for a curved space such as CPk , namely

DiDjX ≡ DiDjX − �l
ijDlX,

DiE
α
j = ∂iE

α
j + f αAβEA

i E
β

j = �l
ijE

α
l ,

(38)

where A in f αAβ is a U(k) index (both U(1) and SU(k)) and �l
ij is the Christoffel symbol

for CPk .
Equation (37) is valid for both Abelian and non-Abelian cases. In the Abelian case,

they simplify since X, Y are commuting functions and F̄ lk → 0, so that DiX → ∂iX and
DiDjX → ∂i∂jX − �l

ij ∂lX.

6. Calculation of A

In this section, we will outline the calculation of A as a function of Aµ via the implementation
of the WN -transformation (28) as induced by the gauge transformation (29) on Aµ. Using (28)
and (37), we find that up to 1/n2 terms

δA = ∂tλ − i[λ, V + A] − i

n
P ij (DiλDj (V + A) − Di(V + A)Djλ)

− 1

n2
P ilP kj (DiλF̄ lkDjV − DiV F̄ lkDjλ)

− i

2n2
P ikP jl(DiDjλDkDlV − DiDjVDkDlλ). (39)

At this stage, it is useful to discuss the scaling of various quantities. All expressions so far
(including the measure dµ, gij ,

(
ω−1

K

)ij
, etc) have been written in terms of the dimensionless
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coordinates xi = x̃i/R, where R is the radius of CPk and x̃ are the dimensionful coordinates.
The calculation of the star product (37) involves a series expansion in terms of 1/n, where
n = 2BR2 and B is the magnitude of the constant U(1) magnetic field. Written in terms of
the dimensionful parameters x̃i , the expansion in 1/n becomes an expansion in 1/B. We shall
further assume that the energy scale of the gauge field fluctuation Aµ, and therefore of A, is
much smaller than B to be consistent with the restriction to LLL.

The scale of the confining potential V is set by the magnetic field B (∼n in terms of
dimensionless variables). A convenient choice for the confining matrix potential V̂ is such
that the ground-state density ρ0(�x) corresponds to a spherical droplet. This is the case when
all the SU(k) multiplets of the J representation up to a fixed hypercharge (the eigenvalue of
Tk2+2k) are completely filled, starting from the lowest. A simple choice for such a potential is
that used in [14],

V̂ =
√

2k

k + 1
ν

(
Tk2+2k +

nk√
2k(k + 1)

)
, (40)

where ν is a constant. (The potential does not have to be exactly of this form; any potential
with the same qualitative features will do.) The particular expression (40) has the property
that 〈s|V̂ |s〉 = νs, where |s〉 denotes an SU(k) multiplet of hypercharge −nk + sk + s, namely√

2k(k + 1)Tk2+2k|s〉 = (−nk + sk + s)|s〉. The symbol for (40) was calculated in [14] to be

Va′b′ ≡ 〈b′,−n|g†V T g|a′,−n〉 = νn
z̄ · z

1 + z̄ · z
δa′b′ + Sk2+2k,a(Ta)b′a′ , (41)

where Sk2+2k,a = 2 tr(g†tk2+2kgta). The important point is that the first term in (41) is diagonal
and of order n in terms of the dimensionless variables z, while the second non-diagonal term
is of order n0. In analysing (39), we can absorb the order n0 term of the confining potential
in the definition of A and treat separately the diagonal term of order n as the potential V to
be used for large n simplifications. In this way, since Va′b′ = δa′b′V (r), where r2 = z̄ · z, is
proportional to the identity, expression (39) can be further simplified as

δA = ∂tλ − i[λ,A] − i

n
P ij (DiλDjA − DiADjλ)

+ uiDiλ − i

n
(P ilDiλF̄ lk − P liF̄ lkDiλ)uk

+
1

2n2

[(
ω−1

K

)ik
gjl + gik

(
ω−1

K

)j l]DiDjλ∇k∂lV , (42)

where

∇k∂lV = ∂k∂lV − �n
kl∂nV , ui = 1

n

(
ω−1

K

)ij
∂jV . (43)

The quantity ui is essentially the phase space velocity, if we think of the LLL as the phase
space of a lower dimensional system, with symplectic structure nωK and Hamiltonian V .

Equation (42) gives the transformation of A. What we are seeking is an expression for A
as a function of Aµ,A = f (Aµ), such that

δA(as in equation (42)) = f (δAµ),

δAµ = ∂µ� + i[Āµ + Aµ,�] = Dµ� + i[Aµ,�], δĀµ = 0.
(44)

The solution for A can be worked out from this requirement, although the calculation is
algebraically a bit tedious [22]. It is given by
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A= A0 − i

2n
gij [Ai, 2DiA0 − ∂0Ai + i[Ai,A0]] +

1

4n

(
ω−1

K

)ij {Ai, 2DjA0 − ∂0Aj + i[Aj,A0]}

+ uiAi − i

2n
gij [Ai,Ak]∂ju

k +
1

4n

(
ω−1

K

)ij {Ai,Ak}∂ju
k

− i

2n
gij [Ai, 2DjAk − DkAj + i[Aj,Ak] + 2F̄ jk]uk

+
1

4n

(
ω−1

K

)ij {Ai, 2DjAk − DkAj + i[Aj,Ak] + 2F̄ jk}uk

+
1

2n2
gik

(
ω−1

K

)j l
(DiAj + DjAi)∇k∂lV , (45)

where [,] and {,} indicate commutators and anticommutators, respectively. The symbol for
the matrix gauge transformation parameter λ̂ can also be evaluated as

λ = � − i

2n
gij [Ai,Dj�] +

1

4n

(
ω−1

K

)ij {Ai, 2Dj�} + O(1/n2). (46)

The gauge field Aµ in (45) contains both the Abelian U(1) and non-Abelian SU(k)

components. In the Abelian case where the fermions interact only with the U(1) gauge
field, the symbols are commuting functions, so the commutator terms in (45) vanish. In terms
of the dimensionful quantities x̃ = Rx, D̃ = D/R, Ã = A/R, Ṽ ∼ B,A can be written as a
series expansion in 1/B. The terms shown in (45) account for all terms of order B0 and 1/B.

The function A being the symbol of the time component of the matrix gauge potential
can be thought of as the Seiberg–Witten map [27, 28] for a curved manifold in the presence
of non-Abelian background gauge fields.

It is clear from (44) that expression (45) is only determined up to gauge-invariant terms
whose coefficients are not constrained by the WN -transformation (28) and the requirement that
it is induced via the gauge transformation (29). As we shall see in the next section, this solution
produces the minimal gauge coupling for the chiral field describing the edge excitations of the
quantum Hall droplet.

7. Edge and bulk actions and anomaly cancellation

The simplification of the action (27) requires one more ingredient, namely the symbol for ρ̂0.
For the case of a confining potential V̂ with an SU(k) symmetry, as discussed in the previous
section, one can perform an exact calculation for ρ0. In the limit where N is large and the
number of fermions K is large, where N � K , one can show that the symbol corresponding
to the density matrix is of the form

(ρ0)a′b′ = ρ0(r
2)δa′b′ , ρ0(r

2) = �

(
1 − R2r2

R2
D

)
, (47)

where � is the step function and RD is the radius of the droplet. Equation (47) defines the
so-called droplet approximation for the fermionic density. We want to evaluate the action
S, and identify the edge and bulk effective actions, in this approximation. As mentioned
earlier, the 1/n expansion of various quantities can be thought of as an expansion in 1/B if
we write our expressions in terms of the dimensionful coordinates x̃. Similarly, using (20),
the prefactor (N/N ′) dµ → [nk/(k!R2k)] dµ̃ = (2B)k/k! dµ̃, where dµ̃ is the measure of
the space in terms of the dimensionful coordinates. For convenience, we will continue the
evaluation of the edge and bulk effective actions in terms of the dimensionless coordinates,
keeping in mind, though, that the 1/n expansion can always be converted to a 1/B expansion
with the appropriate overall prefactor to correctly accommodate the volume of the droplet.
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The large n limit of the bosonic action S0 in the absence of gauge interactions was derived
in [14]. It can be written in terms of a unitary (N ′ × N ′) matrix valued field G = ei�, where
� is the symbol corresponding to �̂ in Û = ei�̂. Explicitly,

S0 = − N

2nN ′

∫
dt dµ

∂ρ0

∂r2
tr[(G†Ġ + νG†DωG)G†DωG]

+
Nk

4πnN ′

∫
ρ0

[
−d(iĀ dGG† + iĀG† dG) +

1

3
(G† dG)3

]
∧

(ωK

2π

)k−1
. (48)

In this equation, Dω is the component of the covariant derivative D perpendicular to the radial
direction, along a special tangential direction on the droplet boundary, given explicitly as
Dω = −(

ω−1
K

)ij
2rx̂iDj ; x̂i is the radial unit vector normal to the boundary of the droplet. ν

is the parameter displayed in (40) for that particular potential. For a more general potential,

ν = 1

n

∂V

∂r2

]
boundary

. (49)

The volume element dµ for CPk is normalized such that
∫

dµ = 1 and is given in local
coordinates as

dµ = εi1j1i2j2···ikjk (ωK)i1j1 · · · (ωK)ikjk

d2kx

(4π)k
= k!

√
det ωK

d2kx

(2π)k
. (50)

Since ρ0(r
2) is a step function as in (47), its derivative ∂ρ0/∂r2 produces a delta function with

support at the boundary of the droplet. As a result, the first two terms in (48) are boundary
terms. The action S0 in (48) is a higher dimensional generalization of a chiral, Wess–Zumino–
Witten action, vectorially gauged with respect to the time-independent background gauge field
Ā [30]. The third term is a WZW term written as an integral over a (2k + 1)-dimensional
region, corresponding to the droplet and time. The usual 3-form in the integrand of the WZW
term, (G†dG)3, has now been augmented to the appropriate (2k + 1)-form (G† dG)3∧(ωK)k−1.
Since the WZW term is the integral of a locally exact form, the whole action S0 should be
considered as part of the edge action.

The part of the action which depends on the external gauge field Aµ is given by

SA = − N

N ′

∫
dt dµ tr[ρ0 ∗ U † ∗ A ∗ U ]. (51)

The large n limit of SA was evaluated in [22]. It contains a boundary contribution expressing
the interaction between the matter field G characterizing the edge excitations of the quantum
Hall droplet and the external gauge field Aµ and a bulk contribution written solely in terms
of the gauge field fluctuations Aµ. Combining the large n limits for S0 and SA, the total edge
action is essentially a higher dimensional Wess–Zumino–Witten action chirally gauged with
respect to the external gauge field Aµ (up to gauge-invariant, completely A-dependent terms).
The bulk contribution is written in the form of Chern–Simons actions (when the fields Aµ are
slowly varying with respect to the length scale set by B).

To keep the expressions simple, we first write the results when ui = 0, i.e., ωK� dV = 0.
The edge action is then

Sedge(ui = 0) = N

2nN ′

[ ∫
∂iρ0

(
ω−1

K

)ij
G†(∂0 + iAL

0 G − iGAR
0

)
G†(∂jG + iAL

j G − iGAR
j

)
+

k

2π

∫
ρ0

[
−d(iAL dGG† + iARG† dG + ALGARG†)

+
1

3
(G† dG)3

]
∧

(ωK

2π

)k−1
]

= SWZW(AL = A + Ā, AR = Ā). (52)
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This is clearly a higher dimensional WZW action, gauged in a left–right asymmetric way.
The full Sedge action, including the ui dependent terms, is also a gauged WZW action; it is
obtained from (52) by the following substitutions:

∂0 → ∂τ = ∂0 + uk∂k,

AL
0 → AL

τ = A0 + uk(Ak + Āk), AR
0 → AR

τ = ukĀk,

AL
i = Ai + Āi, AR

i = Āi .

(53)

The derivative ∂τ is the convective derivative, well known in hydrodynamics. The appearance
of Aτ is consistent with the gauging of the convective derivative. One can explicitly verify
that the u-dependent terms generated by (53) from (52) are gauge invariant.

Because of the chiral gauging, Sedge (including the ui-dependent terms) is not gauge
invariant. Under a gauge transformation, it changes by

δSedge = Nk

4πnN ′

∫
dρ0 tr[d(A + Ā)�] ∧

(ωK

2π

)k−1
. (54)

The bulk contribution to the action is given by

Sbulk = − N

N ′

∫
dt dµρ0 tr(A0 + ukAk)

+
kN

4πnN ′

∫
dt ρ0

[
tr

(
(A + Ā) d(A + Ā) +

2i

3
(A + Ā)3

)
∧

(ωK

2π

)k−1

− (k − 1)

2π
tr

[(
(A + Ā) d(A + Ā) +

2i

3
(A + Ā)3

)
dV

]
∧

(ωK

2π

)k−2
]

+
N

2nN ′

∫
dt dµρ0 tr[∇ iFik + (k + 1)Ak]uk. (55)

The metric-dependent terms in the last line of (55) can be neglected compared to the rest of the
terms. Written in terms of the dimensionful coordinates x̃, they get a prefactor proportional
to 1/(BR2); they are small compared to the other terms in the approximation where R is large
and the gradients of the external field are small compared to B. (The actions (52) and (55) are
related to the Kähler–Chern–Simons and Kähler–WZW actions [31].)

The V -dependent terms in Sbulk can be shown to be gauge invariant for a spherically
symmetric ρ0 and V . The lack of gauge invariance is entirely due to the Kähler–Chern–
Simons term in the second line of (55). The change in Sbulk under a gauge transformation
is

δSbulk = − Nk

4πnN ′

∫
dρ0 tr[d(A + Ā)�] ∧

(ωK

2π

)k−1
. (56)

Adding the gauge variations of the edge and bulk actions we find, as expected, that the total
bosonic action S is gauge invariant, δS = δSedge + δSbulk = 0. (Anomaly cancellation for
two-dimensional Hall effect is discussed in [32].)

The phenomenon of anomaly cancellation is of course expected since gauge invariance is
already built in the action S. The full bosonic action S is, by construction, invariant under

δU = −iλ ∗ U, δAµ = Dµ� + i[Aµ,�] (57)

via the induced WN -transformation (28). This also implies the following gauge transformation
for G:

δGG† = −i� + · · · , (58)

where the ellipsis indicates terms of higher order in 1/n. This means that the large n limit
of the effective action S = Sedge + Sbulk

A is automatically gauge invariant under (57) and (58),
guaranteeing the anomaly cancellation between the edge and bulk contributions.
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In the next section, we will outline a different derivation of the bulk action by matrix
techniques. We shall see that the ‘topological’ part of (55), where the last two terms are
neglected, can be written, for ρ0 = 1, as a single (2k + 1)-dimensional Chern–Simons term to
all orders in 1/n. In fact, with a little bit of algebra, and using N/N ′ = nk/k! for large n, the
bulk action (55) can be brought to the form

Sbulk
A = SCS(Ã), Ã = (A0 + V,−ai + Āi + Ai). (59)

The gauge fields in this equation are of the form Aa
(
T T

a

)
. Since only the last

eigenvalue of the generator Tk2+2k contributes in the symbol, we may write the Abelian part as

−ai = −naKi = aKiT
T
k2+2k

√
2(k+1)

k
. The combination −ai + Āi + Ai can therefore be written

as a + A, where all components are expanded using T T , a being the full background field
Āk2+2kT T

k2+2k
+ ĀaT T

a . Note that the anti-Hermitian components are iAAT T
A = −iAA

(−T T
A

) =
−iAA(TA)R̄ , where the index A denotes both the U(1) and SU(k) indices. The matrices −T T

A

are the generators in the representation R̄ conjugate to the representation R of TA. We will use
this in the next section.

7.1. The nature of the edge states

Turning now to the nature of the edge states, this can be understood in terms of the field G
in (48) [14]. First, consider the case of the background field being Abelian, so that one can
write G = ei�, where � is just one function, not a matrix. The surface of the droplet is
topologically S2k−1. The action involves time derivatives of � and Dω which is the derivative
along an angular direction on S2k−1 which is ωK conjugate to the radius of the droplet. It is
convenient to decompose � in terms of the eigenstates of Dω. Since S2k−1/S1 = CPk−1, the
surface of the droplet, other than the angular direction corresponding to Dω, will be CPk−1. We
see that for each eigenvalue of Dω, � can be expanded in terms of the D-functions for SU(k),
with the eigenvalue for the right action of Rk2−1 fixed to the eigenvlaue for Dω. Explicitly, we
can write � = ∑

l

∑
p,q|p−q=s c

p,q
m D(p,q)

m;s (h), where h ∈ SU(k),D(p,q)

m;s (h) is the D-function
for the irreducible representation of SU(k) of the tensorial type T

q
p with p symmetric lower

indices, q symmetric upper indices and the contraction (or trace) of any p-type index with
any q-type index must vanish. The eigenvalue of Dω is s = p − q, up to normalization
factors. The right state |s〉 in the D-function denotes the unique SU(k − 1)-invariant state
for this representation, with the given eigenvalue for Rk2−1. Note that D(p,q)

m;s are similar to
wavefunctions of a reduced Landau problem on CPk−1. More details of edge states can be
found in [12, 16, 20]. The analysis of edge states on S4 starting from CP3 can be found in
[14]. For the case of a non-Abelian background, one can carry out a similar analysis, although
the details are more involved.

8. The fuzzy space point of view

We shall now return to the question of taking the large N limit of a matrix action, focusing
on the fuzzy space–matrix model point of view. The basic strategy has been to introduce
a set of wavefunctions for the Hilbert space HN and then the large N limit can be defined
using the symbols for the matrices involved. But, as mentioned in the introduction, there are
many ways to do this. Since the action we start with is a matrix action, there is, initially,
no notion of space or spatial geometry. The Hilbert space HN on which the matrices act as
linear transformations can be taken, for example, as arising from the quantization of the phase
space S2 = SU(2)/U(1), where the symplectic form is ω = −inωK,ωK being the Kähler
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form on S2. (N will be a function of n.) Taking n large in this way defines a specific large N
limit. Since ω is a background U(1) field on S2, we could also consider a deformation of this
situation with, say, ω = −inωK + F , where F is topologically trivial (so that the dimension
of HN is not changed). The wavefunctions to be used would now be modified and the large
n limit, via the modified symbols, gives S2 with a different choice of background field on
it. One could also consider HN as the quantization of, say, CPk = SU(k + 1)/U(k), with a
suitable choice of symplectic form (with the values of N matching the dimensions of a class of
SU(k + 1) irreducible representations). This is what we did in the analysis for the dynamics
of the quantum Hall droplet. It is clear that there are many ways to take the large N limit.
Even for the same geometry and topology for the phase space, the choice of symplectic form
is not unique. Once the dimension of the symplectic space has been chosen, these limits can
be parametrized by the choice of background gauge fields. This is what we want to analyse,
particularly for the matrix action S = i

∫
dt Trρ0(U

†D0U), where D0 = ∂0 + A0. (We will
use anti-Hermitian A0 for simplicity of notation in this section. Also any potential V can be
included in A0.)3

The result we find will be essentially identical, with some reinterpretation, to the result
for the quantum Hall system. However, keeping in mind the fuzzy geometry, we want to take
the point of view that the Hilbert space is the fundamental entity, with the smooth manifold
being just a large n simplification. It is, therefore, important to have a matrix version of the
calculations for extracting the large n expansion.

The unitary transformation U encodes the fluctuations of the chosen density matrix or the
edge states from the quantum Hall point of view. Equivalently, it gives the boundary effects
for dynamics in a subspace of a fuzzy space. The bulk dynamics is not sensitive to U and
can be extracted by taking ρ0 = 1. Effectively, we are then seeking the simplification of
S = i

∫
dt Tr D0 in the limit of large matrices. This action is the one-dimensional Chern–

Simons action for the matrix theory.
In the following, we shall choose a specific background and expand the action around it.

The final result is not sensitive to the details of the background, except for the dimension and
topology. Therefore, we can choose a simple background, say, CPk with only the Abelian
field; thus ω = −inωK . The gauge fields A0, Ai , which can be Abelian or non-Abelian,
will be expanded around this background; thus, the fields A0, Ai are actually functions on
fuzzy CPk .

At this point, it is appropriate to clarify the relationship between the lowest Landau
level and fuzzy geometry in more specific terms. The states of the lowest Landau level
form an N-dimensional Hilbert space which we identify as the space HN needed for fuzzy
CPk . Observables when restricted to the LLL are (N ×N)-matrices and these can be taken as
functions on fuzzy CPk . We can see that these are in correspondence with functions on smooth
CPk . A basis for functions on smooth CPk is of the form

{
DR

m,w(g)
}

where |w〉 is trivial under
the action of U(k) ⊂ SU(k + 1), so that we get true functions on SU(k + 1)/U(k) and R is any
representation which contains such a state. At the matrix level, since the states are symmetric
representations of SU(k + 1), a general matrix is of the form Xb1b2···bn

a1a2···an
and transforms as the

product representation J̄ ⊗J . The reduction of this product will contain the singlet, the adjoint
and higher irreducible representations. Thus, upon reducing the product J̄ ⊗ J , we can write
a matrix X in terms of a basis corresponding to the irreducible representations of SU(k + 1) as

Xb1b2···bn

a1a2···an
=

∑
0�p�n

∑
{A}

CA1A2···Ap
(
TA1A2···Ap

)b1b2···bn

a1a2···an
. (60)

3 We do not use a hat to represent matrices or operators on H from now on to avoid clutter in notation. Whether we
mean the matrix or the symbol should be clear from the context. A0 now plays the role of Â of section 4.



12752 D Karabali and V P Nair

The matrices TA1A2···Ap
are obtained from products of the generators of SU(k + 1), namely

TAs, with the condition that they are traceless for any contraction of any of the ais with any
of the bj s. They form a complete basis at the matrix level. The symbol corresponding to the
identity is the constant function on smooth CPk , the symbol for TA will be of the formD(adj)

A,w (g).
The symbols corresponding to TA1A2···Ap

are DR
m,w(g), for the appropriate representation R.

We see that the symbol corresponding to X is a function on CPk , expandable in terms of a
truncated set of basis functions since p � n. As n → ∞, ‘functions’ on HN tend to functions
on CPk . Further, the star product shows that the algebra of MatN goes over to the commutative
algebra of functions on CPk .

This argument is for wavefunctions of the LLL corresponding to an Abelian background.
The wavefunctions for the LLL with a non-Abelian background field are of the form DJ

m,a′(g),
where the state |J, a′,−n〉 transforms as the J ′ representation of SU(k). This can be
constructed in terms of a product of the Abelian background and another representation of
SU(k + 1). The state |J, a′,−n〉 can be viewed as one set of states obtained by the reduction
of the product |J1,−n〉 ⊗ |J2, a

′, 0〉 for some representations J1, J2 of SU(k + 1). In this
way, matrices acting on the product space of two SU(k + 1) representations can lead to the
symbols we obtained using the non-Abelian wavefunctions. This structure with two SU(k +1)

representations is what we expect for matter fields on CPk which form an SU(k + 1) multiplet
J2, where one set (J1 in our notation) arises from the translations on the space. This is also the
mathematical structure relevant for the dynamics of a charged particle on a fuzzy space. (For
example, for the fuzzy sphere, we find that two SU(2) representations are needed to define
charged particle dynamics with a constant (monopole) background field [33].) In summary,
we see that dynamics in the LLL for smooth CPk can reproduce dynamics on fuzzy CPk .

There is also a description of fuzzy CPk directly in terms of embedding in Rk2+2k , which
will be useful in our discussion. For this, we start with k2 + 2k Hermitian matrices XA which
are of dimension (N × N), where N is of the form (n + k)!/n!k! for some integer n. The
embedding conditions are then given by [29, 34]

XAXA = nk(n + k + 1)

2(k + 1)
≡ Cn,

dABCXBXC = (k − 1)
(2n + k + 1)

4(k + 1)
XA ≡ αnXA.

(61)

Consider the SU(k + 1) generators TA in the symmetric representation of rank n. They
may be written as TA = a

†
a(tA)abab ≡ a†tAa, for bosonic annihilation–creation operators

ab, a
†
a, a, b = 1, . . . , k + 1. By using completeness relations, one can easily prove that these

obey representation-dependent identities which are identical to (61) with TA replacing XA.
In other words, the matrices TA in the symmetric rank n representation of SU(k + 1) give a
solution of the embedding conditions (61) via XA = TA = a†tAa. This solution is obviously
fuzzy CPk since functions of Xs become general (N × N)-matrices, acting on the symmetric
rank n representation of SU(k + 1). In equation (61), Cn is the quadratic Casimir operator and
αn is another invariant related to the properties of the dABC symbol. We may also note that
conditions (61) can also be rewritten in terms of −iTA as

(−iTA)(−iTA) = −Cn,

dABC(−iTB)(−iTC) = −iαn(−iTA).
(62)

A general gauge field is introduced in the matrix language by the prescription DA =
−iTA + AA. This will involve k2 + 2k spatial components for the gauge potential, which are
obviously too many for CPk . Thus, there are restrictions on DA which ensure that there are
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only 2k spatial components for the potentials. These conditions may be taken as the gauged
version of conditions (62),

DADA = −Cn, dABCDBDC = −iαnDA. (63)

In other words, even after gauging, the derivatives obey the same embedding conditions (62)
as before gauging [33]. (In the limit of a continuous manifold, there is some redundancy in
these conditions. While they are sufficient for our purpose, whether they are necessary and
sufficient in the noncommutative case is not quite a settled issue.)

9. The Chern–Simons action again

We will now reconsider the simplification of the action from a purely matrix point of view [35].
To carry out the expansion for large N, we write A0, AA in terms of (N × N)-blocks. In other
words, we can take H = HN ⊗ H2 so that the matrix elements of AA, i = 0, 1, 2, . . . , may
be written as AApq = 〈p|AA|q〉 = 〈la|AA|rb〉, l, r = 1, 2, . . . , N, a, b = 1, 2, . . . , dim J2.
HN will carry an irreducible representation of SU(k + 1), specifically the symmetric rank n
representation. H2 carries the representation J2 of some compact Lie group. (The action
obtained in the previous sections is for the case when this group is SU(k + 1) or a subgroup
of it.)

We will consider the variation of the matrix action i Tr D0 under a change of the
background fields. More generally, let K be a matrix acting on the Hilbert space H. We
may write K in an expansion in Ds as a sum of terms of the form

K = K(−iT ) = KA1A2···As (−iTA1)(−iTA2) · · · (−iTAs
). (64)

(Our results extend by linearity to sums of such terms, so it is sufficient to consider one such
term, for a fixed value of s.) In the large n limit, Ts typically become the coordinates for the
space M, in an embedding of M in Rd of suitable dimension d. Since −iTA = DA − AA,
it is possible to expand K in terms of DAs which give the same basis on a background with
additional gauge fields AA. This can be done by writing K = K(DA − AA) and expanding in
powers of A. Since A is not necessarily small, it is easier to consider a perturbation around
D and calculate the variation of K by expanding K(D − δD) − K(D) to linear order in δD.
By integrating this over δDA up to AA, we can obtain K. This will give an expression for K in
terms of K(D).

The actual calculation will involve a number of steps.

(i) We write the commutator of Ds as [DA,DB] = fABCDC + FAB ≡ ωAB + FAB ≡ �AB .
This defines ω,�. When the gauge field fluctuations are zero, ωAB = fABCDC will
become the symplectic form in the large n limit. We first define a matrix NAC which
will play the role of an inverse to �CB when acting on functions of Ds which obey
the embedding conditions (63) and which tends to the inverse of the symplectic form at
large n.

(ii) We then write δD in terms of NAC , which will generate a series which is naturally in
powers of 1/n.

(iii) The variation of K to first order can then be obtained in a suitable form. In particular, we
take K = D0 to get the variation of the action, i Tr(δD0).

(iv) The next step will be to use the symbols to simplify the action. There is a correction to
the definition of the symbol which must also be included.

(v) The result can be compared to the variation of the Chern–Simons action to establish that
the action does indeed become the Chern–Simons action.
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We shall now go over these steps, indicating briefly the basic mathematical results
involved.

An ‘inverse’ to �. NAB is defined by the equations

NAC�CB = δAB + XAB + iYAB, �BCNCA = δBA + XBA + iYBA, (65)

where

XAB = DBDA

Bn

, YAB = 1

Bn

(
n +

1

2
(k + 1)

) [
dABCDC + i

αn

2
δAB

]
(66)

and Bn denotes the combination Bn = 1
4n(n + k + 1) + 1

16 (k2 − 1). We also introduce the
expression

N0AC = 1

Bn

[
fACKDK +

1

4
(k − 1)δAC

]
. (67)

It obeys the equation (N0ω)AB = δAB + XAB + iYAB + RAB with

BnRAB = fACKDKfCBLDL − DBDA − Cn

k
δAB

− i

2
(2n + k + 1)dABCDC +

1

4
(k − 1)fABCDC. (68)

The matrices X and Y are of order 1 at large n; R is naively of the same order, but it is
actually of lower order due to algebraic identities on TA. A solution for NAB can be obtained
as a series by writing N = N0 + N1 + N2 + · · · and matching terms of the same order in powers
of n in (65). The first few terms are given by

NAB = N0AB − (RN0)AB − (N0FN0)AB + (R(X + iY)N0)AB

+ (N0F(X + iY)N0)AB + (N0FN0FN0)AB + · · · . (69)

The embedding conditions (63) are crucial in verifying that this is a solution to (65). Terms
containing powers of X, Y, such as RXN0, RYN0, are seemingly of the same order RN0,
since X, Y are of order 1. But they are actually down by a power of n due to the embedding
conditions. The series (69), therefore, is appropriate at large n.

Expression for δD. Using NAB , we can express the variation of D in a form suitable for a
series expansion in 1/n. Multiplying equations (65) by δDA, using δDAYAB + YBAδDA = 0,
which also follows from the embedding conditions, and rearranging terms one can show that

δDB = 1

2
(ξC[DC,DB] + [DB,DC]ξ̃C) − 1

4Bn

[δD · D − D · δD,DB],

ξC = δDA

(
NAC +

δAC

Bn

)
, ξ̃C =

(
NCA +

δCA

Bn

)
δDA.

(70)

Variation of K. We now turn to the matrix function K = KA1A2···As DA1DA2 · · · DAs
. Here we

can take, without loss of generality, the coefficients KA1A2···As to be symmetric in all indices.
(Any antisymmetric pair may be reduced to a single D and F; F itself may be re-expanded
in terms of Ds, to bring it to this form.) Taking the variation of K under D → D − δD and
rearranging terms keeping in mind this symmetry, we can bring δK to the form

Tr(δK) = − 1
2 Tr[δDANAB[DB,K] − [DB,K]NBAδDA + O(1/n3)]. (71)

This gives the change in Tr K to order 1/n2, as n becomes large.

Variation of Tr(D0). Equation (71) can be used to work out the expansion of the action,
at least to order 1/n2, taking K = D0. The terms in NAB , from equation (69), which can
contribute to this order, are

NAB = ω−1
AB +

(k − 1)

4Bn

δAB − ω−1
ACFCDω−1

DB − RACω−1
CB + O(1/n3), (72)
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where ω−1
AB = fABCDC/Bn. (The notation anticipates the fact that this matrix will become the

inverse of ω in the large n limit. But, at this stage ω−1
AB is still a matrix.) The variation of the

action, up to order 1/n2, is obtained from (71), (72) as

Tr(δD0) = δD
(1)
0 + δD

(2)
0 + · · · ,

δD
(1)
0 = − 1

2

(
δAAω−1

ABFB0 + FB0ω
−1
ABδAA

)
,

δD
(2)
0 = 1

2

(
δAAω−1

ABFBCω−1
CDFD0 + FD0ω

−1
ABFBCω−1

CDδAA

)
.

(73)

Using symbols. What is left is to simplify the expansion (73), which is still in matrix terms,
in terms of the symbols as an integral over CPk with a trace over the remaining (small, a, b

type) matrix labels. For this, we can bring ω−1
AB to the left end by the cyclicity of the trace, and

then replace it by

ω−1
AB = 1

Bn

[
−i

nk√
2k(k + 1)

fABCSC,k2+2k +
i

2
fABCSC−iR+i + fABCSCαAα

]
. (74)

Here we have used the standard rule for simplifying the symbol of TAX and also the fact the
symbol of the gauge field may be written as AC = SCαAα where the summation is over α = 1
to 2k. The fact that the symbol of AC has this restricted form is due to the constraints (63).
The inverse of ω, in the limit of the continuous manifold, is given in the coordinate basis as

ω−1ij = −i
nk

Bn

√
2k(k + 1)

f αβ,k2+2k(E−1)iα(E−1)
j

β, (75)

where Es are the frame fields for the metric on CPk . This can be used to simplify the first term
on the right-hand side of (74) as ω−1ijEα

i E
β

j SAαSBβ .

Change in symbol. There is one more correction which we must take account of. The symbol
was defined using wavefunctions with the gauge field fluctuations equal to zero. As the
potential is changed, the definition of the symbol also changes. This change can be calculated
as

(K) = (K)0 − 1
4

[
(ω−1

ABFAB + FABω−1
AB)K

]
+ · · · . (76)

This is needed to simplify the symbol for δD
(1)
0 , for which K = − 1

2

(
δAAω−1

ABFB0 + FB0ω
−1
AB

δAA

)
.

The variation of the action. Taking account of these observations, the evaluation of the action
is straightforward, although somewhat tedious. The result, to order 1/n2, is obtained as∫

dt Tr(δD0) = N

∫
dt dµ(CPk)

[
−ω−1ij tr(δAiFj0)

+
1

2

(
ω−1imω−1nj +

1

2
ω−1ijω−1mn

)
tr[(δAiFj0 + Fj0δAi)Fmn]

− 1

n
ω−1mn tr[δAm(−D2 + (k + 1))Fn0] + O(1/n3)

]
. (77)

In this expression, the field components are in the coordinate basis.

Relation to the Chern–Simons action. Equation (77) can be expressed in terms of the Chern–
Simons form. The variation of the (2k + 1)-dimensional Chern–Simons term is given by

δS = ik+1

(2π)kk!

∫
tr(δAF k). (78)
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Replacing F by ω + F and expanding, we get

δS = ik+1

(2π)kk!

∫
tr

(
ωkδA + kωk−1δAF +

1

2
k(k − 1)ωk−2δAF 2 + · · ·

)
. (79)

Since ω is proportional to the Kähler form, this can be simplified and written in terms of the
standard volume measure dµ for CPk . As an example, we note that the second term can be
written as

ik+1

(2π)kk!
kωk−1 tr(δAmFn0) dxm dxn dt = i

nk

k!

∫
dt dµ[−ω−1mn tr(δAmFn0)]. (80)

Rewriting the other terms similarly, and comparing with (77), we find

i
∫

dt Tr(δD0) = Nk!

nk
δSCS − i

N

n

∫
dt dµω−1mn tr[δAm(−D2 + (k + 1))Fn0] + · · ·

≈ δSCS − i
N

n

∫
dt dµω−1mn tr[δAm(−D2 + (k + 1))Fn0]+ O(1/n3). (81)

In this expression for i Tr(D0), we have also included a term

i Tr δf A0 = Nk!

nk

ik+1

(2π)kk!

∫
ωk tr(δA0). (82)

The reason is that (77) only gives the variation of i Tr(D0) due to the change in the spatial
components of A, namely under Ai → Ai + δAi . A change in the functional form of A0 is
also possible; the variation of i Tr(D0) due to this is (82) and should be included to obtain the
general variation.

The first term on the right-hand side of (81) will integrate to give the Chern–Simons form.
The second term is due to the higher terms, terms involving derivatives, in the star product.
Let S∗CS denote the Chern–Simons term defined with star products used for the products of
fields and their derivatives occurring in it. The integrated version of (81) is then

i
∫

dt Tr(D0) ≈ S∗CS + · · · . (83)

It is worth emphasizing that the gauge potentials in this Chern–Simons action are the full
potentials a + A, where a is the background value corresponding to the symplectic form and
A is the additional potential or gauge field fluctuation.

The second term in (81) which arises from higher terms in the star product also agrees
with the result (55), if we write A0 = iV ; some partial integrations are also necessary. As
argued after (55), by rescaling the coordinates x → x̃ = Rx, this term is seen to be small if the
radius is large and the gradients of fields are small compared to the value of the background
field. The Chern–Simons form is unaffected by this scaling. In this approximation, the leading
term of the action is given by

i
∫

dt Tr(D0) ≈ SCS + · · · . (84)

This result shows that the expansion of Tr(D0) around different backgrounds can be
approximated, in the large n limit and for small gradients for the field strengths, by the
Chern–Simons form, with A replaced by a + A, a being the desired background potential.
Note that any reference to the metric and other geometrical properties of CPk has disappeared
in this result.

Strictly speaking, our calculation has explicitly verified this result (84) only up to order
1/n2 or, equivalently, up to the term involving the five-dimensional Chern–Simons form for
A. To this order, we do get SCS(a + A). But we can see that the result (84) holds with the
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full Chern–Simons term. This is because, the final expression, whatever it is, should be a
functional of only the combination a + A, since the separation between the background and
fluctuation is arbitrary. Also it should have the correct gauge invariance property and it should
agree with SCS(a +A) when expanded up to the term with the five-dimensional Chern–Simons
form for A. The only such term, apart from the ambiguity of higher gradients of fields, is
SCS(a + A). Thus, the result (84) holds, in general, in a gradient expansion at large R.

10. Towards a matrix theory of gravity

The basic mathematical result we have can be applied to gravity on fuzzy spaces [36]. As
mentioned in the introduction, one may take the minimalist point of view that fuzzy spaces
are just another regularization. Then, for ordinary field theories it would not be anything
special, but it is still very attractive for gravity since symmetries can be preserved. One may
also consider fuzzy space as fundamental, continuous space being a large N approximation.
Formulating gravity on fuzzy spaces is, in either case, an interesting problem. (For earlier
formulations of gravity on fuzzy spaces, see [6, 37].)

To see how gravity arises naturally, recall that the background fields we have considered
are valued in the Lie algebra of U(k) for CPk = SU(k + 1)/U(k). This is part of the isometry
group SU(k + 1) of CPk . Gauging of the isometry group introduces gravity, so we may
interpret the gauge fields as gravitational fields. This is the basic point of contact. We shall
now present an argument on how our results may be adapted for describing gravity.

The setting for the problem is the finite-dimensional Hilbert space H, which we may take
to be split into a matter part Hm and a space part Hs , the latter leading to the spacetime at
large n. The action for the evolution of states is given by the action

S = i
∫

dt Trρ0(U
†D0U), (85)

where D0 = ∂0 + A0. The Hamiltonian as a matrix on the Hilbert space is H = −iA0. We
know that (85) is the most general equation for evolution of states for matter, the specific
characteristics of the matter system being encoded in the choice of H and other observables.
The only natural choice for the space part is that the same action should apply to evolution
within Hs . To see how this can be implemented, represent a general state in H as |A, r〉, where
the labels A,B, etc pertain to the degrees of freedom of space and the labels r, s, etc describe
the matter system of interest. For the operator D0, we introduce the splitting

〈A, r|D0|B, s〉 = δrs〈A|D(s)
0 |B〉 + 〈A, r|D(m)

0 |B, s〉. (86)

The part of D0 which is proportional to the identity in Hm is designated as D
(s)
0 and the

remainder as D
(m)
0 . The latter includes effects of coupling the matter system of interest to the

spatial degrees of freedom. We also take the density matrix to have the form

〈A, r|ρ0|B, s〉 = δAB〈r|ρ0|s〉. (87)

Note that we take ρ0 to have maximal rank in Hs ; if the rank is less than maximal, it would
mean that the dynamics does not cover all of space. This is why we make the choice (87).

While A0 (or H) specifies the choice of matter system, for spacetime, the geometry is not
a priori determined, therefore D(s) should be regarded as an arbitrary matrix in (85). Thus,
we take the action (85) as the action for the theory, including gravity, where U and D

(s)
0 are

regarded as quantities to be varied. D
(m)
0 is to be regarded as a given operator, specifying the

matter system of interest.
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We can get different large n limits for the action depending on what backgrounds we
choose. Extremization of the action can be used to determine the best background. If we
ignore all matter degrees of freedom as a first approximation, the action becomes

S ≈ i
∫

dt Tr
(
D

(s)
0

)
. (88)

For the case of CPk with a non-Abelian background, the wavefunctions were of the form
DJ

m,a′(g). As mentioned in section 8, the state |J, a′,−n〉 may be taken as one set of states
obtained by the reduction of the product |J1,−n〉⊗|J2, a

′, 0〉 for some representations J1, J2 of
SU(k + 1). (We will take J2 to be the fundamental representation of SU(k + 1) for simplicity.)
Therefore, at the matrix level we split the states as Hs = HN ⊗ H2, where the components
are of dimensions N = dim J1 and dim J2 = k + 1, respectively. Correspondingly, we write
D0 as D0pq = 〈p|D0|q〉 = 〈la|D0|rb〉, l, r = 1, 2, . . . , N, a, b = 1, 2, . . . , k + 1. The matrix
structure for the indices l, r will be converted to the symbol, and we carry out a large N
expansion. The result is (2k + 1)-dimensional Chern–Simons theory. For the gauge fields, in
general, there will be a U(1) component as well. Thus, the gauge group is U(k + 1). The
conclusion of this argument is that, for a fuzzy space, we should expect Chern–Simons gravity
[38]. (In this context, it is fascinating that there are indications of Chern–Simons gravity in
the context of M-theory [39]; we expect that the present analysis can be related to a matrix
version of some of the considerations in these references.)

The simplest example along these lines would be k = 3, which gives a U(4) Chern–
Simons theory on a seven-dimensional space. We take this space to be of the form S2 × M5

and the gauge field strength as −ilωK + F , where ωK is the Kähler form on S2, l is an integer
and F is in the SU(4) Lie algebra. The action is then given by

S = −i
l

24π2

∫
tr

(
A dA dA +

3

2
A3 dA +

3

5
A5

)
. (89)

Since SU(4) is locally isomorphic to O(6), we see that this is appropriate for Euclidean gravity
in five dimensions. In fact, the SU(4) potential can be written as A = P αEα

i dxi + 1
2J αβω

αβ

i dxi

where J αβ are the generators of O(5) ⊂ O(6) and P α are a basis for the complement of O(5)

in O(6). Eα are the frame fields and ωαβ is the spin connection. The equations of motion
give F = 0 and have the solution A = g−1 dg with g ∈ O(6). This is with no matter. This
space is O(6)/O(5) = S5 which is the Euclidean version of de Sitter space. It is given in
a basis where the cosmological constant � has been scaled out; it may be introduced by the
replacement Eα → √

�Eα .
There is also a neat reduction of this to four dimensions [40]. This is achieved by the

additional restrictions E5
5 = 1, ω5β = 0, ω

αβ

5 = 0, for α, β = 1, . . . , 4. The fifth dimension
is taken as a circle of, say, unit radius. (This restriction, as well as the choice of S2 with the
U(1) field proportional to the Kähler form, can be interpreted as particular compactifications.)
In this case, the action becomes

S = l�

64π

∫ (
EαEβRγδ − �

2
EαEβEγ Eδ

)
εαβγ δ

= l�

16π

∫
d4x

√
g(R − 3�). (90)

We get the Einstein–Hilbert action with a cosmological constant.
There are many issues, such as getting Minkowski signature, generalizing to other

dimensions and incorporating matter in a detailed way, which are not yet clear. Nevertheless,
this nexus of Hall effect, fuzzy spaces and gravity is very suggestive and intriguing.
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11. Discussion and outlook

We shall begin with a synopsis of the basic result of our analysis. We have a finite-dimensional
Hilbert space H with fields and other observables realized as linear transformations or matrices
acting on this space. When the dimension of the matrices is large, we can simplify matrix
products, the action, etc, using symbols for the matrices and star products. The symbols are
defined in terms of a set of wavefunctions. These wavefunctions are based on a continuous
smooth symplectic space M, of dimension, say, 2k, with a set of gauge fields defined on it.
(We may think of the Hilbert space H as providing a fuzzy version of M.) The wavefunctions
characterize the space M and the fields on it, as far as observables are concerned. The large
N limits of matrices are thus parametrized by M and the gauge fields. Alternatively, we may
think of the Hilbert space as the set of lowest Landau levels for quantum Hall effect on M
and the gauge fields as external fields to which the fermions couple. In either case, the basic
action we have analysed is of the form

S = i
∫

dt Tr(ρ̂0Û
†D̂0Û ), (91)

where ρ̂0 characterizes a fiducial or initial state. Our basic result is then the following.

• In the large N limit, ρ̂0 describes a droplet of a subspace of M. The simplification of the
action yields a bulk action and a boundary action.

• The bulk action is given by the (2k + 1)-dimensional Chern–Simons action, when the
gradients of the gauge fields are small. This action, although obtained by expansion
around a chosen background, is not sensitive to the geometry of the space.

• The boundary action describes the fluctuations of the boundary of the droplet or,
equivalently, the large N limit of embeddings of a fuzzy sphere in the fuzzy version
of M. It is given by a chiral, gauged higher dimensional generalization of the WZW
action.

• The bulk and boundary actions are not separately gauge invariant, but the total action is,
with the gauge anomalies cancelling between the two.

Perhaps, the most interesting conclusion which emerges from this analysis is the possibility
of describing a number of higher dimensional theories as matrix models. For example, the
(2 + 1)-dimensional Chern–Simons and the two-dimensional WZW theories help to define
conformal field theories in two dimensions. One can introduce a matrix model for them, as a
specific large N limit of (91). But such a matrix model can also lead to higher dimensional
Chern–Simons and WZW models, as a different way of taking the large N limit. This suggests
a way of generalizing conformal field theories to higher dimensions. In this context, the
exploration of some of the well-known features of WZW models such as symmetry structures
and current algebra would be very interesting. (This is also closely related to the Kähler–
Chern–Simons and Kähler–WZW models [31].)

Noncommutative Chern–Simons theories have been extensively investigated over the last
few years [41]. Properties of such theories on flat noncommutative spaces are fairly well
understood by now. They have also been formulated on some (2 + 1)-dimensional fuzzy
spaces, but a general formulation on fuzzy spaces has not yet been possible [42]. These
theories are matrix versions of the Chern–Simons theory characterized by the choice of the
fuzzy space and the gauge group and give the usual Chern–Simons theory at large N, just
as the action (91) does. It is perfectly sensible to study these matrix models and (91) as
different theories, but if we only ask for a matrix theory whose commutative limit gives the
Chern–Simons theory, then the action (91) is a good choice. It has also the advantage that it
can easily be formulated on any fuzzy space and can give Chern–Simons theories on smooth
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spaces of any dimension and with any gauge group, depending on how the large N limit
is taken. The matrix version (91) may thus be considered as a ‘universal’ Chern–Simons
theory [35].

Bosonization in higher dimensions is another closely related topic [43, 44]. The phase
space for fermions in k dimensions is 2k-dimensional. Semiclassically, each quantum state
corresponds to a certain phase volume. Thus, by the exclusion principle, a collection of a
large number of fermions is an incompressible droplet in the phase space. Deformations of
the droplet give a bosonic description of the dynamics of this collection of fermions. Thus,
the matrix action (91) can also be used for phase space bosonization. The large N result is
evidently the generalized WZW theory. Related approaches in formulating higher dimensional
phase space bosonization in terms of a noncommutative field theory have been explored in
[20, 44].

There is also an evident connection to fluid dynamics; the edge dynamics of the droplet
is that of an incompressible droplet of fluid. The additional gauge fields allow for nonzero
compressibility. The droplet can be viewed as the embedding of a 2k-brane in M. Therefore,
one should be able to relate these ideas to the descriptions of fluids in the brane language
[45]. It is also related to the noncommutative description of the quantum Hall effect proposed
in [46].

As mentioned in the previous section, gravity on a fuzzy space may be the context in
which these results can be most fruitful. This story is far from complete, there are many issues
related to the Minkowski signature, incorporation of matter, etc which need to be clarified.
Also, as mentioned earlier, there are suggestions that Chern–Simons gravity can provide an
effective description of M-theory [39]. A matrix description via (91) is an attractive possibility
that needs to be explored further. It is also suggestive that quantum Hall droplets appear in
the dual field theories for many gravitational backgrounds [47].

Another interesting line of development, which we have not discussed, is the
supersymmetric version of quantum Hall effect [48]. The bosonic partners of fermions
do not have to form an incompressible droplet since there is no exclusion principle for them.
Nevertheless, it is possible to obtain supersymmetric droplets and study their properties. This
can be applicable in the context of supersymmetric brane dynamics, supergravity, etc.
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